Optimal Design of Deformation Monitorimg Networks Using Genetic Algorithm
نویسندگان
چکیده
Finding an optimal configuration is one the most important steps in the design and establishing a deformation monitoring network. The main goals of an optimal network design process include finding proper location of control stations (First Order Design) as well as proper weight of observations (Second Order Design) in a way that satisfy all the criteria considered for the quality of the network which itself is evaluated by the network’s accuracy, reliability (internal and external), sensitivity, and cost. There are different tools for optimization including genetic algorithm which have been successfully used for solving complicated optimization problems. This paper reviews the traditional optimization method of FOD for a deformation network and uses a genetic algorithm. Different components of genetic algorithm and the way it works are discussed. Through simulated example, the efficiency of the genetic algorithm in designing a deformation monitoring network is shown and compared with the traditional methods.
منابع مشابه
A Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملOptimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network
A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...
متن کاملDesign of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter
This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...
متن کاملThe Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods
One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular chann...
متن کاملThe Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods
One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular chann...
متن کامل